UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | CHEMISTRY 5070/23 Paper 2 Theory October/November 2010 1 hour 30 minutes Candidates answer on the Question Paper. No Additional Materials are required. #### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. #### Section A Answer all questions. Write your answers in the spaces provided in the Question Paper. #### Section B Answer any three questions. Write your answers in the spaces provided in the Question Paper. A copy of the Periodic Table is printed on page 20. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Examiner's Use | | |--------------------|--| | Section A | | | В6 | | | В7 | | | В8 | | | В9 | | | Total | | This document consists of 17 printed pages and 3 blank pages. DC (CW/SW) 33106 © UCLES 2010 [Turn over ### **Section A** For Examiner's Use Answer **all** the questions in this section in the spaces provided. The total mark for this section is 45. A1 (a) Choose from the following list of metals to answer the questions below. aluminium iron lead magnesium potassium silver vanadium Each metal can be used once, more than once or not at all. Which metal | | (i) | reacts with cold water to form an alkaline solution, | |-----|-------|---| | | | [1] | | | (ii) | forms a protective oxide layer on its surface, | | | | [1] | | (| (iii) | is the catalyst used in the industrial manufacture of ammonia, | | | | [1] | | (| (iv) | is a sacrificial metal used to prevent iron pipes from rusting, | | | | [1] | | | (v) | is in Period 5 of the Periodic Table? | | | | [1] | | (b) | Dra | w a labelled diagram to show the structure of a typical metal. | [2] | A2 | Eth | anol | can be made both by fermentation and by the addition of steam to ethene. | |-----------|-----|------|--| | | (a) | (i) | Name the organic compound required for fermentation. [1] | | | | (ii) | State the conditions under which fermentation most readily takes place. | | | (b) | Writ | e an equation for the reaction between steam and ethene. | | | | | [1] | | | (c) | Etha | anol, C ₂ H ₅ OH, reacts with ethanoic acid, CH ₃ COOH. | | | | | $CH_3COOH + C_2H_5OH \rightleftharpoons CH_3COOC_2H_5 + H_2O$ | | | | (i) | Name the compound $\mathrm{CH_3COOC_2H_5}$. | | | | (ii) | What name is given to this type of chemical reaction? | | | (d) | (i) | Name the third member of the alcohol homologous series. | | | | | [1] | | | | (ii) | Draw the structural formula of this compound, showing all atoms and bonds. | [1] | | | | | [Total: 8] | [Turn over For Examiner's Use A3 A student measured the volume of hydrogen produced over time when small pieces of zinc reacted with excess sulfuric acid. For Examiner's Use The results are shown in the graph below. (a) Use the information from the graph to calculate the average speed of reaction in the first two minutes. [1] (b) Explain why the reaction stopped after 6 minutes.[1] - (c) Copper catalyses this reaction. - (i) On the axes above, sketch a line to show the expected results for the catalysed reaction. [1] - (ii) Explain how a catalyst changes the speed of reaction.[1] | (d) | Explain, using ideas about colliding particles, what happens to the speed of this reaction when larger particles of zinc are used. | For
Examiner's
Use | |-----|---|--------------------------| | | | | | | [2] | | | (e) | Explain, using ideas about colliding particles, what happens to the speed of this reaction when the temperature of the reaction mixture is increased. | | | | | | | | | | | | [2] | | | | [Total: 8] | | | | | s are diatomic. | |------------|-----|---| | (a) ∨ | Vha | t do you understand by the term diatomic? | |
(b) (i | i) | Describe the trend in colour of the Group VII elements down the Group. | | | | [1] | | (ii | • | In what physical state do the following elements exist at room temperature and pressure? | | | | bromine | | | | iodine[2] | | (c) A | que | eous bromine reacts with aqueous potassium iodide. | | | | $Br_2(aq) + 2KI(aq) \rightarrow 2KBr(aq) + I_2(aq)$ | | (i | i) | Write an ionic equation for this reaction. | | | | [1] | | (ii | I) | Describe a positive test for iodide ions. | | | | test | | | | observation[2] | | (iii | i) | Explain why aqueous bromine does not react with aqueous potassium chloride. | | | | | | | | [1] | | | rod | ochloric acid can be made by burning hydrogen in chlorine, then dissolving the uct in water. the formulae for the ions present in hydrochloric acid. | | C- | | | **(e)** An aqueous solution of calcium hydroxide was titrated with 0.0150 mol/dm³ hydrochloric acid. For Examiner's Use $$\mathrm{Ca(OH)_2} \ + \ 2\mathrm{HC}\mathit{l} \ \rightarrow \ \mathrm{CaC}\mathit{l}_2 \ + \ 2\mathrm{H}_2\mathrm{O}$$ It required $6.00\,\mathrm{cm^3}$ of this aqueous hydrochloric acid to neutralise $20.0\,\mathrm{cm^3}$ of the calcium hydroxide solution. Calculate the concentration, in mol/dm³, of the calcium hydroxide solution. [3] [Total: 12] **A5** Carbon and graphite are two forms of carbon. diamond graphite | (a) | (i) | Describe two differences in the structure of diamond and graphite. | |-----|--------------|---| | | | | | | | | | | (ii) | Explain, in terms of their structure, why graphite is soft but diamond is hard. | | | ` , | | | | | [2] | | (b) | Tin | is extracted by heating tin(IV) oxide, SnO ₂ , with carbon in a furnace. | | | | $SnO_2 + 2C \rightarrow Sn + 2CO$ | | | (i) | How does this equation show that tin(IV) oxide gets reduced? | | | | [1] | | | (ii) | Explain why carbon monoxide must not be allowed to escape from the furnace. | | | | [1] | | (c) | Carl
carl | bon monoxide can be formed by the reduction of carbon dioxide with red-hot oon. | [1] For Examiner's Use © UCLES 2010 5070/23/O/N/10 (i) Write an equation for this reaction. (ii) Carbon monoxide has a triple covalent bond. Draw the electronic structure of carbon monoxide. Show only the outer electrons. For Examiner's Use [2] (iii) Carbon monoxide reacts with chromium to form chromium carbonyl. The structure of chromium carbonyl is shown below. Write the empirical formula for chromium carbonyl.[1] [Total: 10] ## **Section B** For Examiner's Use Answer three questions from this section in the spaces provided. The total mark for this section is 30. | В6 | The | carb | on cycle regulates the amount of carbon dioxide in the atmosphere. | |----|-----|-------|---| | | (a) | | lain how the processes of photosynthesis and respiration help to regulate the bunt of carbon dioxide in the atmosphere. | | | | | | | | | | [3] | | | (b) | Met | hane is an atmospheric pollutant which contributes to global warming. | | | | (i) | Suggest two possible consequences of an increase in global warming. | | | | | [2] | | | | (ii) | Write an equation for the complete combustion of methane. | | | | | | | | | | [1] | | | (| (iii) | Methane is generally unreactive. Apart from combustion, state one other chemical reaction of methane. | | | | | [1] | | we | name is a member of the alkane homologous series. | For | |------|--|-----------------| | (i) | Describe how the boiling points of unbranched alkanes vary with the size of their molecules. | Examiner
Use | | (ii) | Alkanes can be cracked to form alkenes. State the conditions required for cracking alkanes. | | | | [2] | | | | [Total: 10] | | **B7** Zinc chloride is an ionic solid. It can be electrolysed using the apparatus shown below. | (a) | Explain why zinc chloride conducts electricity when molten, but not when solid. | |-----|--| | | | | | [2] | | (b) | Predict the products of this electrolysis at | | | the anode, | | | the cathode[1] | | (c) | When a dilute aqueous solution of zinc chloride is electrolysed, hydroxide ions are converted to oxygen at the anode. Write the ionic equation for this reaction. | | | | | | | | | | | | [2] | | (d) | Describe a positive test for zinc ions. | | | test | | | observations | | | [3] | (e) Solid zinc chloride absorbs ammonia to form tetrammine zinc chloride, $Zn(NH_3)_4Cl_2$. For Examiner's Use $${\rm ZnC}\it{l}_{2} + 4{\rm NH}_{3} \longrightarrow {\rm Zn}({\rm NH}_{3})_{4}{\rm C}\it{l}_{2}$$ Calculate the maximum yield, in grams, of tetrammine zinc chloride formed when 3.4g of zinc chloride reacts with excess ammonia. [2] [Total:10] | В8 | Mag | gnes | ium is a reactive metal. | For | |----|-----|------|--|-------------------| | | (a) | (i) | Name the products formed when magnesium reacts with steam. | Examiner's
Use | | | | | [1] | | | | | (ii) | Write the equation for the reaction of magnesium with ethanoic acid, $\mathrm{CH_3COOH}$. | [2] | | | | (b) | Des | gnesium chloride is a soluble salt. scribe how you can make pure dry crystals of magnesium chloride from magnesium bonate. | [3] | | | | (c) | The | e equation shows the reaction which occurs when magnesium carbonate is heated. | | | | | | ${\rm MgCO_3} \rightarrow {\rm MgO} + {\rm CO_2}$ | | | | | Sta | te the name given to this type of chemical reaction. | | | | | | [1] | | | | | | | | | | | | | 1 | (d) A student compared the action of heat on three solid metal carbonates. She heated each carbonate using the apparatus shown below. In each case, she recorded the length of time taken for the limewater to turn milky. For Examiner's Use | (i) | State one factor that must be kept constant if the speeds of reaction are to be | |-----|---| | | compared in a fair way. |[1] (ii) The time taken for the limewater to turn milky for each metal carbonate is shown in the table. | metal carbonate | time taken for the limewater to turn milky / s | |---------------------|--| | copper carbonate | 10 | | magnesium carbonate | 40 | | zinc carbonate | 24 | | Describe and explain these results in terms of the reactivity of the metals. | | |--|----| | | | | | | | | | | | [] | [Total: 10] For Examiner's Use | В9 | Sul | fur did | oxide is a gas which contributes to acid rain. | |----|-------|---------|--| | | (a) | (i) | State one source of sulfur dioxide in the atmosphere. | | | | | [1] | | | | (ii) | Acid rain can cause lakes to become acidic. This may cause fish and plants in the water to die. | | | | | Describe one other environmental problem caused by acid rain. | | | | | [1] | | | /I- \ | ۰ | | | | (a) | | rain is a solution of dilute sulfuric acid. acidity in lakes can be neutralised by adding powdered calcium carbonate. | | | | (i) | Write an equation, including state symbols, for the reaction of calcium carbonate with sulfuric acid. | | | | | | | | | | | | | | | [2] | | | | (ii) | State one industrial use of sulfuric acid. | | | | (") | State one madathal dae of adirane acid. | | | | | [1] | | | | (iii) | Sulfuric acid is a strong acid. What do you understand by the term strong acid? | | | | | | | | | | [1] | | | (c) | | uric acid is manufactured by the Contact process. ne the raw materials used in the first stage of the Contact process. | | | | | | | | | | • • | | | (d) | The | equation shows the second stage of the Contact process. | | | | | $2SO_2 + O_2 \rightleftharpoons 2SO_3 \Delta H = -197 \text{ kJ/mol}$ | | | | (i) | State the meaning of the symbol ΔH . | | | | | [1] | | | | (ii) | Predict and explain the effect of increasing the temperature on the position of equilibrium in this reaction. | | | | | | | | | | | | | | | [2] | | | | | • • | | | | | [Total: 10] | # **BLANK PAGE** # **BLANK PAGE** ## **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. DATA SHEET The Periodic Table of the Elements | | | | | | T | | | | | | | | | | | | | | | 1 | | | | _ | _ | |------------------------------------|-------|-----------|------------|------------|----|----|----------------|------|----------|------------------|----|-----|-----------------|-----|----------|------------------|-----|-----------|-------------------|-----|----|------------------|---------------------------|--------------------------|--------------| | | | 0 | ₽ Д | Helium 2 | 20 | Ne | Neon
10 | 40 | Αľ | Argon
18 | 84 | 첫 | Krypton
36 | 131 | Xe | Xenon
54 | 222 | Rn | Radon
86 | | | | 175 | Ľ | Lutetium | | | | VII | | | 19 | ш | Fluorine
9 | 35.5 | 10 | Chlorine
17 | 80 | Ā | Bromine
35 | 127 | Ι | lodine
53 | 210 | Αt | Astatine
85 | | | | 173 | Υb | Ytterbium | | | | N | | | 16 | 0 | Oxygen
8 | 32 | တ | | 62 | Se | Selenium
34 | 128 | <u>е</u> | Tellurium
52 | 209 | Ьо | Polonium
84 | | | | 169 | Ę | Thulium | | | | ^ | | | 14 | z | Nitrogen 7 | 31 | _ | Phosphorus
15 | 75 | | | 122 | Sb | Antimony
51 | 209 | <u>B</u> | Bismuth
83 | | | | 167 | ш | Erbium | | | | N | | | 12 | ပ | Carbon
6 | 28 | <u>s</u> | Silicon
14 | 73 | Ge | Germanium
32 | 119 | Sn | Tin
50 | 207 | Pb | Lead
82 | | | | 165 | 웃 | Holmium | | | | | | | 11 | Δ | Boron
5 | 27 | ΝI | Aluminium
13 | 20 | Ga | Gallium
31 | 115 | In | Indium
49 | 204 | 11 | Thallium
81 | | | | 162 | ۵ | Dysprosium | | S | | | | | | | | | | | | Zn | Zinc
30 | 112 | ပ္ပ | Cadmium
48 | 201 | Hg | Mercury
80 | | | | 159 | Д | Terbium | | The Periodic Table of the Elements | | | | | | | | | | | 64 | Cn | Copper
29 | 108 | Ag | | | Αn | Gold
79 | | | | 157 | gq | Gadolinium | | e of the | Group | | | | | | | | | | 59 | Z | Nickel
28 | 106 | Pd | Palladium
46 | 195 | ቷ | Platinum
78 | | | | 152 | E | Europium | | dic Tabl | Gro | | | | | | | | | | 59 | ဝိ | Cobalt
27 | 103 | Rh | Rhodium
45 | 192 | ľ | Iridium
77 | | | | 150 | Sm | Samarium | | he Perio | | | - I | Hydrogen 1 | | | | | | | 56 | Бe | Iron
26 | 101 | Ru | Ruthenium
44 | 190 | Os | Osmium
76 | | | | 147 | Pm | Promethium | | F | | | | | | | | | | | 55 | M | Manganese
25 | | ဥ | Technetium
43 | 186 | Re | Rhenium
75 | | | | 144 | P | Neodymium | | | | | | | | | | | | | 52 | ပ် | Chromium
24 | 96 | Mo | Molybdenum
42 | 184 | > | Tungsten
74 | | | | 141 | ፈ | Praseodymium | | | | | | | | | | | | | 51 | > | Vanadium
23 | 93 | Q
N | Niobium
41 | 181 | <u>ra</u> | Tantalum
73 | | | | 140 | Se | Cerium | | | | | | | | | | | | | 48 | F | Titanium
22 | 91 | Zr | Zirconium
40 | 178 | Ξ | Hafhium
72 | | | | 1 | | | | | | | | | | | | | | | 45 | သွင | Scandium
21 | 68 | > | Yttrium
39 | 139 | Гa | Lanthanum
57 * | 227 | Ac | Actinium
89 † | id sprips | le oction | 201100 | | | | = | | | 6 | Be | Beryllium
4 | 24 | Mg | Magnesium
12 | 40 | Ca | Calcium
20 | 88 | S | Strontium
38 | 137 | Ва | Barium
56 | 226 | Ra | Radium
88 | * 58–71 Lanthanoid series | + 90-103 Actinoid series | | | | | _ | | | 7 | = | Lithium
3 | 23 | Na | Sodium
11 | 39 | ¥ | Potassium
19 | 85 | Rb | Rubidium
37 | 133 | Cs | Caesium
55 | 223 | ŗ | Francium
87 | * 58–71 | + 90-10, | 5 | | 2010 |) | | | | | | | | | | | 507 | 70/23 | /O/ | N/1 | Λ | | | | | | | | | | | - 20 | | | | | | | | | | | | | | | |----------------------------|---------------|--------------------|---------------|-----------------|-----------------|-----------------|--------------|-----------------|----|-------------------|----------------|--------------------|-----------------|-------------------| | annid cariae | 140 | 141 | 144 | 147 | | 152 | | 159 | | | 167 | 169 | 173 | 175 | | and series | Se | ቯ | Nd | Pm | Sm | Eu | gq | Д | ò | 우 | ш | T | Υb | Ľ | | | Cerium | Praseodymium | Neodymium | Promethium | | Europium | (| Terbium | | Ċ | Erbium | Thulium | Ytterbium | Lutetium | | | 28 | 29 | 09 | LQ | 29 | 63 | 64 | 69 | _ | ٥ | 99 | 69 | /0 | 1.1 | | a = relative atomic mass | 232 | 231 | 238 | 237 | 244 | 243 | 247 | 247 | | 252 | 257 | 258 | | 260 | | X = atomic symbol | 드 | Ъа | - | 8
N | Pu | Am | Cm | æ | చ | Es | Fm | Md | | ئ | | b = atomic (proton) number | Thorium
90 | Protactinium
91 | Uranium
92 | Neptunium
93 | Plutonium
94 | Americium
95 | Curium
96 | Berkelium
97 | 0) | Einsteinium
99 | Fermium
100 | Mendelevium
101 | Nobelium
102 | Lawrencium
103 | | | | | | | | | | | | | | | | | Key The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).